Deep Active Learning for Multi-Label Classification of Remote Sensing Images
نویسندگان
چکیده
In this letter, we introduce deep active learning (AL) for multi-label classification (MLC) problems in remote sensing (RS). particular, investigate the effectiveness of several AL query functions MLC RS images. Unlike existing (which are defined single-label or semantic segmentation problems), each function paper is based on evaluation two criteria: i) uncertainty; and ii) diversity. The uncertainty criterion associated to confidence neural networks (DNNs) correctly assigning multi-labels image. To assess criterion, three strategies: loss ordering; measuring temporal discrepancy predictions; iii) magnitude approximated gradient embeddings. diversity selection a set images that as diverse possible other prevents redundancy among them. exploit clustering strategy. We combine above-mentioned strategies with strategy, resulting different functions. All considered introduced first time framework RS. Experimental results obtained benchmark archives show these result highly informative samples at iteration process.
منابع مشابه
Multi-label Classification of Satellite Images with Deep Learning
Up-to-date location information of human activity is vitally important to scientists and governments working to preserve the Amazon rainforest. We implement a Convolutional Neural Network (CNN) model to perform multi-label classification of Amazon satellite images. Our model identifies the weather conditions and natural terrain features in the images as well as man-made developments such as roa...
متن کاملDeep learning for multi-label scene classification
Scene classification is an important topic in computer vision. For similar weather conditions, there are some obstacles for extracting features from outdoor images. In this thesis, I present a novel approach to classify cloudy and sunny weather images. Inspired by recent study of a deep convolutional neural network and the spatial pyramid matching, I generate a model based on the ImageNet datas...
متن کاملDeep Learning for Multi-label Classification
In multi-label classification, the main focus has been to develop ways of learning the underlying dependencies between labels, and to take advantage of this at classification time. Developing better feature-space representations has been predominantly employed to reduce complexity, e.g., by eliminating non-helpful feature attributes from the input space prior to (or during) training. This is an...
متن کاملActive Learning with Multi-Label SVM Classification
Multi-label classification, where each instance is assigned to multiple categories, is a prevalent problem in data analysis. However, annotations of multi-label instances are typically more timeconsuming or expensive to obtain than annotations of single-label instances. Though active learning has been widely studied on reducing labeling effort for single-label problems, current research on mult...
متن کاملDeep Self-taught Learning for Remote Sensing Image Classification
This paper addresses the land cover classification task for remote sensing images by deep self-taught learning. Our selftaught learning approach learns suitable feature representations of the input data using sparse representation and undercomplete dictionary learning. We propose a deep learning framework which extracts representations in multiple layers and use the output of the deepest layer ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Geoscience and Remote Sensing Letters
سال: 2023
ISSN: ['1558-0571', '1545-598X']
DOI: https://doi.org/10.1109/lgrs.2023.3305647